Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Rofo ; 194(7): 737-746, 2022 07.
Article in English | MEDLINE | ID: covidwho-1735321

ABSTRACT

PURPOSE: To assess the prognostic power of quantitative analysis of chest CT, laboratory values, and their combination in COVID-19 pneumonia. MATERIALS AND METHODS: Retrospective analysis of patients with PCR-confirmed COVID-19 pneumonia and chest CT performed between March 07 and November 13, 2020. Volume and percentage (PO) of lung opacifications and mean HU of the whole lung were quantified using prototype software. 13 laboratory values were collected. Negative outcome was defined as death, ICU admittance, mechanical ventilation, or extracorporeal membrane oxygenation. Positive outcome was defined as care in the regular ward or discharge. Logistic regression was performed to evaluate the prognostic value of CT parameters and laboratory values. Independent predictors were combined to establish a scoring system for prediction of prognosis. This score was validated on a separate validation cohort. RESULTS: 89 patients were included for model development between March 07 and April 27, 2020 (mean age: 60.3 years). 38 patients experienced a negative outcome. In univariate regression analysis, all quantitative CT parameters as well as C-reactive protein (CRP), relative lymphocyte count (RLC), troponin, and LDH were associated with a negative outcome. In a multivariate regression analysis, PO, CRP, and RLC were independent predictors of a negative outcome. Combination of these three values showed a strong predictive value with a C-index of 0.87. A scoring system was established which categorized patients into 4 groups with a risk of 7 %, 30 %, 67 %, or 100 % for a negative outcome. The validation cohort consisted of 28 patients between May 5 and November 13, 2020. A negative outcome occurred in 6 % of patients with a score of 0, 50 % with a score of 1, and 100 % with a score of 2 or 3. CONCLUSION: The combination of PO, CRP, and RLC showed a high predictive value for a negative outcome. A 4-point scoring system based on these findings allows easy risk stratification in the clinical routine and performed exceptionally in the validation cohort. KEY POINTS: · A high PO is associated with an unfavorable outcome in COVID-19. · PO, CRP, and RLC are independent predictors of an unfavorable outcome, and their combination has strong predictive power. · A 4-point scoring system based on these values allows quick risk stratification in a clinical setting. CITATION FORMAT: · Scharf G, Meiler S, Zeman F et al. Combined Model of Quantitative Evaluation of Chest Computed Tomography and Laboratory Values for Assessing the Prognosis of Coronavirus Disease 2019. Fortschr Röntgenstr 2022; 194: 737 - 746.


Subject(s)
COVID-19 , COVID-19/diagnostic imaging , Humans , Lung/diagnostic imaging , Middle Aged , Prognosis , Retrospective Studies , SARS-CoV-2 , Tomography, X-Ray Computed/methods
2.
PLoS One ; 15(11): e0242475, 2020.
Article in English | MEDLINE | ID: covidwho-937232

ABSTRACT

BACKGROUND: COVID-19 is frequently complicated by venous thromboembolism (VTE). Computed tomography (CT) of the chest-primarily usually conducted as low-dose, non-contrast enhanced CT-plays an important role in the diagnosis and follow-up of COVID-19 pneumonia. Performed as contrast-enhanced CT pulmonary angiography, it can reliably detect or rule-out pulmonary embolism (PE). Several imaging characteristics of COVID-19 pneumonia have been described for chest CT, but no study evaluated CT findings in the context of VTE/PE. PURPOSE: In our retrospective study, we analyzed clinical, laboratory and CT imaging characteristics of 50 consecutive patients with RT-PCR proven COVID-19 pneumonia who underwent contrast-enhanced chest CT at two tertiary care medical centers. MATERIAL AND METHODS: All patients with RT-PCR proven COVID-19 pneumonia and contrast-enhanced chest CT performed at two tertiary care hospitals between March 1st and April 20th 2020 were retrospectively identified. Patient characteristics (age, gender, comorbidities), symptoms, date of symptom onset, RT-PCR results, imaging results of CT and leg ultrasound, laboratory findings (C-reactive protein, differential blood count, troponine, N-terminal pro-B-type natriuretic peptide (NT-proBNP), fibrinogen, interleukin-6, D-dimer, lactate dehydrogenase (LDH), creatine kinase (CK), creatine kinase muscle-brain (CKmb) and lactate,) and patient outcome (positive: discharge or treatment on normal ward; negative: treatment on intensive care unit (ICU), need for mechanical ventilation, extracorporeal membrane oxygenation (ECMO), or death) were analyzed. Follow-up was performed until May 10th. Patients were assigned to two groups according to two endpoints: venous thromboembolism (VTE) or no VTE. For statistical analysis, univariate logistic regression models were calculated. RESULTS: This study includes 50 patients. In 14 out of 50 patients (28%), pulmonary embolism was detected at contrast-enhanced chest CT. The majority of PE was detected on CTs performed on day 11-20 after symptom onset. Two patients (14%) with PE simultaneously had evidence of deep vein thrombosis. 15 patients (30%) had a negative outcome (need for intensive care, mechanical ventilation, extracorporeal membrane oxygenation, or death), and 35 patients (70%) had a positive outcome (transfer to regular ward, or discharge). Patients suffering VTE had a statistically significant higher risk of an unfavorable outcome (p = 0.028). In univariate analysis, two imaging characteristics on chest CT were associated with VTE: crazy paving pattern (p = 0.024) and air bronchogram (n = 0.021). Also, elevated levels of NT-pro BNP (p = 0.043), CK (p = 0.023) and D-dimers (p = 0.035) were significantly correlated with VTE. CONCLUSION: COVID-19 pneumonia is frequently complicated by pulmonary embolism (incidence of 28% in our cohort), remarkably with lacking evidence of deep vein thrombosis in nearly all thus affected patients of our cohort. As patients suffering VTE had an adverse outcome, we call for a high level of alertness for PE and advocate a lower threshold for contrast-enhanced CT in COVID-19 pneumonia. According to our observations, this might be particularly justified in the second week of disease and if a crazy paving pattern and / or air bronchogram is present on previous non-enhanced CT.


Subject(s)
Coronavirus Infections/complications , Pneumonia, Viral/complications , Pulmonary Embolism/diagnostic imaging , Thorax , Venous Thromboembolism/diagnostic imaging , Adult , Aged , Aged, 80 and over , Betacoronavirus , COVID-19 , Female , Humans , Male , Middle Aged , Outcome Assessment, Health Care , Pandemics , Pulmonary Embolism/etiology , Retrospective Studies , SARS-CoV-2 , Thorax/pathology , Thorax/ultrastructure , Venous Thromboembolism/etiology
3.
BJR Open ; 2(1): 20200026, 2020.
Article in English | MEDLINE | ID: covidwho-921021

ABSTRACT

OBJECTIVE: CT is important in the care of patients with COVID-19 pneumonia. However, specificity might be poor in the absence of a clinical and epidemiological context. The goal of this work was to systematically evaluate two novel CT features (sharp margin and geographic shape) of COVID-19 pneumonia. METHODS: All patients with reverse transcription polymerase chain reaction proven COVID-19 pneumonia and chest CT between March first and April 15, 2020 were retrospectively identified from two tertiary care hospitals in Germany. The CTs were evaluated regarding the presence of typical CT signs (e.g. ground glass opacitiy, consolidation, crazy paving). Moreover, the shape of the opacifications (round, geographic, curvilinear) and their margin (unsharp, sharp) was determined. RESULTS: The study population comprised 108 patients (64 male) with a mean age of 59.6 years. Ground glass opacities (96%) and consolidation (75%) were the most prevalent CT signs. Crazy paving was seen in 17%, bronchial dilatation in 21%, air bronchogram in 29%, vessel enlargement in 47%, cavitation in 0%, lymphadenopathy in 32%, pleural effusion in 16%. Round configuration of densities was present in 41% of CTs, geographic shape in 27% and curvilinear opacities in 44%. 79% of opacifications were at least partially sharply marginated. In almost all cases, the lung was affected bilaterally (94%). CONCLUSION: The CT pattern of COVID-19 pneumonia in a cohort from Germany was in accordance with prior studies. However, we identified two novel CT signs of COVID-19 pneumonia which have so far not been systematically evaluated. A sharp border and geographic shape of opacifications were frequently observed. ADVANCES IN KNOWLEDGE: The newly described CT features "sharp margin" and "geographic shape" of opacifications in patients with COVID-19 pneumonia might help to increase specificity of CT.

SELECTION OF CITATIONS
SEARCH DETAIL